DeMoBat: Industrial dismantling of battery modules and electric motors to secure economically strategic raw materials for e-mobility
- contact:
Simon Glöser-Chahoud
-
project group :Sustainable Value Chain
- funding:
Umweltministerium BW
- partner:
Fraunhofer IPA, CUTEC, KIT WBK, HS Esslingen, BTU Cottbus, zahlreiche Industriepartner
- start:
12/2019
- end:
11/2022
The joint project DeMoBat aims to develop industrial disassembling processes for traction batteries and drive trains of electric vehicles. These processes are considered as a prerequisite for a resource-efficient and sustainable design of closed-loop supply chains for electro-mobility. Traction batteries represent a key cost factor of electro-mobility and cause significant environmental impacts during production, which is why their most efficient and long-term use is a crucial element of the sustainable design of electro-mobility.
The targeted disassembly of battery packs into individual modules and subsequent cell level enables condition-specific uses of the battery modules or cells. A disassembling allows on the one side reassembling for second use applications, such as energy storages or automotive spare parts. On the other side, high-quality recycling of the electrode active material can be reached. The same applies to electric motors, where the rare-earth permanent magnets and copper coils are valuable components.
While the other research partners are primarily working on technical solutions for disassembling, IIP is responsible for coordinating sub-project 1. In this context, IIP evaluates raw material markets, business models, legal framework conditions, and logistics concepts, as well as capacity and sequence planning of the disassembling processes from a technoeconomic perspective.
Publications and project results
As part of the project, a wide range of project results were published.
- Abschlussbericht DeMoBat veröffentlicht von der Landesanstalt für Umwelt und in Baden-Württemberg
- Industrial disassembling as a key enabler of circular economy solutions for obsolete electric vehicle battery systems
Glöser-Chahoud, S.; Huster, S.; Rosenberg, S.; Baazouzi, S.; Kiemel, S.; Singh, S.; Schneider, C.; Weeber, M.; Miehe, R.; Schultmann, F. 2021. Resources, conservation and recycling, 174, Art.-Nr.: 105735. doi:10.1016/j.resconrec.2021.105735 - Return Rates and Recovery Options of Used Electric Vehicle Traction Batteries in Germany = Rücklaufmengen und Verwertungswege von Altbatterien aus Elektromobilen in Deutschland
Glöser-Chahoud, S.; Huster, S.; Rosenberg, S.; Schultmann, F. 2021. Chemie-Ingenieur-Technik, 93 (11), 1805–1819. doi:10.1002/cite.202100112 - Field Study and Multimethod Analysis of an EV Battery System Disassembly
Rosenberg, S.; Huster, S.; Baazouzi, S.; Glöser-Chahoud, S.; Al Assadi, A.; Schultmann, F. 2022. Energies, 15 (15), Art.Nr. 5324. doi:10.3390/en15155324 - Chapter 20: Business Models for Second-Life Battery Applications
Rosenberg, S.; Huster, S.; Glöser-Chahoud, S.; Schultmann, F. 2022. Handbook on Smart Battery Cell Manufacturing : The Power of Digitalization. Ed.: K. Birke, 391–408, World Scientific. doi:10.1142/9789811245626_0021 - A simulation model for assessing the potential of remanufacturing electric vehicle batteries as spare parts
Huster, S.; Glöser-Chahoud, S.; Rosenberg, S.; Schultmann, F. 2022. Journal of Cleaner Production, 363, Art.-Nr.: 132225. doi:10.1016/j.jclepro.2022.132225 - A dynamic network design model with capacity expansions for EoL traction battery recycling – A case study of an OEM in Germany
Rosenberg, S.; Glöser-Chahoud, S.; Huster, S.; Schultmann, F. 2023. Waste Management, 160, 12–22. doi:10.1016/j.wasman.2023.01.029 - Simulative Bestimmung der Nachfrage nach wiederaufgearbeiteten Produkten unter Berücksichtigung von Kundenpräferenzen = Simulative determination of demand for remanufactured products under consideration of customer preferences
Huster, S.; Unterladstätter, T.; Rosenberg, S.; Rudi, A.; Schultmann, F. 2023. Simulation in Produktion und Logistik 2023 : ASIM Fachtagung : 20. Fachtagung, 13.-15. September 2023, TU Ilmenau. Hrsg.: S. Bergmann, 81–90, Universitätsverlag Ilmenau. doi:10.22032/dbt.57811 - Remanufacturing capacity planning in new markets—effects of different forecasting assumptions on remanufacturing capacity planning for electric vehicle batteries
Huster, S.; Rosenberg, S.; Glöser-Chahoud, S.; Schultmann, F. 2023. Journal of Remanufacturing, 13 (3), 283–304. doi:10.1007/s13243-023-00130-3 - Combining dynamic material flow analysis and life cycle assessment to evaluate environmental benefits of recycling – A case study for direct and hydrometallurgical closed-loop recycling of electric vehicle battery systems
Rosenberg, S.; Kurz, L.; Huster, S.; Wehrstein, S.; Kiemel, S.; Schultmann, F.; Reichert, F.; Wörner, R.; Glöser-Chahoud, S. 2023. Resources, Conservation and Recycling, 198, Art.-Nr.: 107145. doi:10.1016/j.resconrec.2023.107145 - Roboterunterstützte Demontage von E-Auto-Komponenten
Assadi, A. A.; Baazouzi, S.; Rosenberg, S.; Grimm, J.; Mannuß, O. 2023. Maschinenbau, 3 (6), 44–47. doi:10.1007/s44029-023-0832-6 - Assessing economic uncertainty in dynamic reverse logistics networks – A stochastic modeling approach for planning circular battery treatment
Rosenberg, S.; Huster, S.; Rudi, A.; Schultmann, F. 2025. Computers & Industrial Engineering, 201, https://doi.org/10.1016/j.cie.2025.110900